We develop a new technique for verifying temporal properties of infinite-state (distributed) systems. The main idea is to reduce the temporal verification problem to the problem of verifying the safety of infinite-state systems expressed in first-order logic. This allows to leverage existing techniques for safety verification to verify temporal properties of interesting distributed protocols, including some that have not been mechanically verified before.
We model infinite-state systems using first-order logic, and use first-order temporal logic (FO-LTL) to specify temporal properties. This general formalism allows to naturally model distributed systems, while supporting both unbounded-parallelism (where the system is allowed to dynamically create processes), and infinite-state per process.
The traditional approach for verifying temporal properties of infinite-state systems employs well-founded relations (e.g. using linear arithmetic ranking functions). In contrast, our approach is based the idea of fair cycle detection. In finite-state systems, temporal verification can always be reduced to fair cycle detection (a system contains a fair cycle if it revisits a state after satisfying all fairness constraints). However, with both infinitely many states and infinitely many fairness constraints, a straightforward reduction to fair cycle detection is unsound. To regain soundness, we augment the infinite-state transition system by a dynamically computed finite set, that exploits the locality of transitions. This set lets us define a form of fair cycle detection that is sound in the presence of both infinitely many states, and infinitely many fairness constraints. Our approach allows a new style of temporal verification that does not explicitly involve ranking functions. This fits well with pure first order verification which does not explicitly reason about numerical values. In particular, it can be used with effectively propositional first-order logic (EPR), and thus guaranteeing that checking inductiveness is decidable.
We applied our technique to verify temporal properties of several interesting protocols. To the best of our knowledge, we have obtained the first mechanized liveness proof for both TLB Shootdown, and Stoppable Paxos.